Synthesis and Characterization of New Bismuth Lead Vanadate $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$

M. Kurzawa, M. Bosacka and I. Szkoda

(Submitted March 15, 2006; in revised form January 3, 2007)

Abstract

It has been shown that BiVO_{4} and $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ react with each other, forming a new compound of the formula $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ at molar ratio equal to $1: 1$. This compound has also been obtained from $\mathrm{PbO}, \mathrm{Bi}_{2} \mathrm{O}_{3}$, and $\mathrm{V}_{2} \mathrm{O}_{5}$, mixed at a molar ratio of $4: 1: 3$. It melts congruently at a temperature of $725 \pm 5{ }^{\circ} \mathrm{C}$ and crystallizes in the triclinic system with unit-cell parameters: $a=0.710076 \mathrm{~nm}$, $b=1.41975 \mathrm{~nm}, c=1.42972 \mathrm{~nm}, \alpha=134.552^{\circ}, \beta=97.2875^{\circ}, \gamma=89.6083^{\circ}$, and $Z=4$.

| Keywords | bismuth orthovanadate, lead divanadate, phase equi-
 libria |
| :--- | :--- | libria

1. Introduction

Literature information implies that there exists a series of new compounds of the general formula $\mathrm{M}_{2}^{\mathrm{II}} \mathrm{M}^{\mathrm{III}} \mathrm{V}_{3} \mathrm{O}_{11}$ in the ternary system of metal oxides $\mathrm{M}^{\mathrm{II}} \mathrm{O}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{M}_{2}^{\mathrm{III}} \mathrm{O}_{3}$, where $\mathrm{M}^{\mathrm{II}}=\mathrm{Co}, \mathrm{Mg}, \mathrm{Ni}$, and Zn , and $\mathrm{M}^{\mathrm{III}}=\mathrm{Fe}, \mathrm{Cr}$, In. ${ }^{[1-4]}$ Also, compounds of $\mathrm{M}_{3}^{\mathrm{II}} \mathrm{Fe}_{4} \mathrm{~V}_{6} \mathrm{O}_{24}$ type are formed in the $\mathrm{M}^{\text {II }} \mathrm{O}$ $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Fe}_{2} \mathrm{O}_{3}$ systems. ${ }^{[5,6]}$ In the structure of these compounds, VO_{4} tetrahedra as well as VO_{5} bipyramids can be distinguished. ${ }^{[5,6]}$ The compounds have good catalytic properties. ${ }^{[7]}$

Literature search showed that in the systems $\mathrm{Bi}_{2} \mathrm{O}_{3}$ $\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MO}$, where $\mathrm{M}=\mathrm{Sr}$, Ba compounds are formed with general formula $\mathrm{Bi} \mathrm{M} \mathrm{M}_{2}^{\mathrm{II}} \mathrm{V}_{3} \mathrm{O}_{11} \cdot{ }^{[8,9]}$ Those compounds for Sr and Ba are not isostructural. $\mathrm{BiSr}_{2} \mathrm{~V}_{3} \mathrm{O}_{11}$ crystallizes in the triclinic system with the space group $P \overline{1}$, its cell parameters are: $a=7.0332(6) \AA, b=10.213(2) \AA, c=6.982(2) \AA$, $\alpha=96.01(2)^{\circ}, \beta=92.87(2)^{\circ}, \gamma=99.16(2)^{\circ}, V=491.3(1)$ \AA^{3}, and $Z=2 .{ }^{[8]}$ Both the pyrovanadate groups $\left(\mathrm{V}_{2} \mathrm{O}_{7}\right)^{4-}$ and the orthovanadates groups $\left(\mathrm{VO}_{4}\right)^{3-}$ are isolated in the structure of that compound. As a result of the substitution of Sr for Ba , a compound crystallizing in the monoclinic system is formed, despite the fact that it contains the same coordinated polyhedra as $\mathrm{BiSr}_{2} \mathrm{~V}_{3} \mathrm{O}_{11}$. The cell parameters of $\mathrm{BiBa}_{2} \mathrm{~V}_{3} \mathrm{O}_{11}$ are: $a=12.332(4) \AA, b=7.750(4) \AA$, $c=11.279(4) \AA, \beta=103.22(3)^{\circ}$, and $V=1049(1) \AA^{3}$, with the space group $P 2_{1} / c, Z=4$. ${ }^{[9]}$

The aim of this work was determining the phase relations in the system $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}-\mathrm{BiVO}_{4}$ and checking whether a compound belonging to the family $\mathrm{Bi}_{2}^{\mathrm{II} I} \mathrm{~V}_{3} \mathrm{O}_{11}$ is formed in the investigated system. Research on the $\mathrm{PbO}-\mathrm{Bi}_{2} \mathrm{O}_{3}$ $\mathrm{V}_{2} \mathrm{O}_{5}$ system is motivated by the fact that many of these

[^0]tetrahedral anion compounds display interesting properties due to the presence of Bi and Pb lone-pair electrons. ${ }^{[10]}$ It is particularly interesting that these compounds exhibit transport behavior typical of anions. ${ }^{[10]}$

The components of the system $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}-\mathrm{BiVO}_{4}$ are well known. $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ is one of the five compounds belonging to the system $\mathrm{PbO}-\mathrm{V}_{2} \mathrm{O}_{5}$. This compound does not have polymorphic forms. $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ melts congruently at 740 ${ }^{\circ} \mathrm{C} .{ }^{[11]}$ This lead(II) pyrovanadate(V) crystallizes in the monoclinic system with the space group $P 2_{1} / c, Z=4$, and its unit-cell parameters are: $a=7.1027 \AA, b=7.1607 \AA$, $c=13.368 \AA$, and $\beta=105.935^{\circ} .{ }^{[11]}$

Bismuth(III) orthovanadate(V) occurs in nature as a mineral named pucherite, crystallizing in the orthorhombic system. ${ }^{[12]}$ This polymorph has never been obtained in laboratory conditions. As a result of the synthesis of this compound, at low temperature a tetragonal polymorph of BiVO_{4} is obtained, possessing a zircon-type structure. A monoclinic phase forms at high temperatures. At a temperature of $255^{\circ} \mathrm{C}$, monoclinic BiVO_{4} undergoes a reversible second-order phase transition to the tetragonal scheelite-type structure. Above $255{ }^{\circ} \mathrm{C}, \mathrm{BiVO}_{4}$ has an ideal scheelite structure. At temperatures higher than $400{ }^{\circ} \mathrm{C}$, the zircon form of BiVO_{4} transforms irreversibly into the monoclinic form. ${ }^{[12-14]}$ Bismuth(III) orthovanadate(V) melts congruently at $940{ }^{\circ} \mathrm{C} .{ }^{[15]}$ The high-temperature modification of BiVO_{4} (scheelite) crystallizes in the tetragonal system with the space group $I 4_{1} / a$; its cell parameters are: $a=7.307(0) \mathrm{A}$ and $c=6.466(3) \AA .{ }^{[14]}$

The phase relations in the $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{PbO}$ system were studied. ${ }^{[16,17]}$ Only one work ${ }^{[17]}$ on the reactivity between lead(II) pyrovanadate(V) and bismuth(III) orthovanadate(V) has been found in literature. In that paper, it was shown that a compound with the formula $\mathrm{Pb}_{6} \mathrm{Bi}_{2} \mathrm{~V}_{8} \mathrm{O}_{29}$ was obtained as a result of a reaction between $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and BiVO_{4} at the molar ratio 3:2. That compound melts at $710{ }^{\circ} \mathrm{C} ;{ }^{[17]}$ whether the melting was congruent or peritectic was not specified.

2. Experimental Procedure

The reagents used in this research were: PbO (Merck, Darmstadt, Germany), $\mathrm{Bi}_{2} \mathrm{O}_{3}$ (POCh, Gliwice, Poland), and
$\mathrm{V}_{2} \mathrm{O}_{5}$ (Riedel-de Haën, Steinheim, Germany). The hightemperature modification of BiVO_{4} was obtained as a result of heating an equimolar mixture of $\mathrm{Bi}_{2} \mathrm{O}_{3}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$ in the cycles: $600{ }^{\circ} \mathrm{C}(24 \mathrm{~h})+650{ }^{\circ} \mathrm{C}(24 \mathrm{~h}) . \mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ was obtained as a result of heating the mixture of PbO and $\mathrm{V}_{2} \mathrm{O}_{5}$ at a molar ratio $2: 1$ in three cycles: $500^{\circ} \mathrm{C}(2 \mathrm{~h})+600^{\circ} \mathrm{C}$ $(24 \mathrm{~h})+650{ }^{\circ} \mathrm{C}(24 \mathrm{~h})$.

For the research, 16 samples were prepared from the investigated system $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}-\mathrm{BiVO}_{4}$, belonging to the ternary system $\mathrm{PbO}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Bi}_{2} \mathrm{O}_{3}$. The reagents were weighed in appropriate portions, homogenized by grinding, and next pressed into pellets and heated in an air atmosphere in a furnace. All samples were heated in two cycles: $600^{\circ} \mathrm{C}$ $(24 \mathrm{~h})+650^{\circ} \mathrm{C}(24 \mathrm{~h})$. After each heating cycle, the pellets were ground and subjected to x-ray diffraction (XRD) and differential thermal analysis (DTA) investigations.

The equilibrium phases were determined by XRD analysis of samples heated additionally for 2 to 4 h in selected temperatures and then rapidly cooled to ambient temperature.

The XRD examinations were performed using a diffractometer DRON-3 (Bourevestnik, St. Petersburg, Russia) Co $\mathrm{K} \alpha$ radiation and an Fe filter. The identification of individual phases was based on the accordance of obtained diffraction patterns with the data contained in the PDF cards. ${ }^{[18]}$

The DTA investigations were conducted by using a derivatograph of F.Paulik-J.Paulik-L.Erdey type (MOM, Budapest, Hungary). The measurements were performed in an air atmosphere, in quartz crucibles at a heating rate of
$10^{\circ} \mathrm{C} / \mathrm{min}$ in the temperature range 20 to $1000^{\circ} \mathrm{C}$. The weight of the investigated samples always amounted to 500 mg .

The density of the compound was determined by the method described in an earlier work. ${ }^{[19]}$ The unit-cell parameters of the resultant compound were calculated by using the program POWDER. ${ }^{[20]}$ Exact positions of the diffraction lines were determined by the internal standard method. The internal standard used was KCl (space group $F m \overline{3} m, a=0.6293 \mathrm{~nm})$.

3. Results and Discussion

The first stage of this work was an attempt to synthesize the compound $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$. For this purpose, a sample of the composition $50 \mathrm{~mol} \% \mathrm{~Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $50 \mathrm{~mol} \% \mathrm{BiVO}_{4}$ was weighed and prepared by conventional methods in two cycles: $600{ }^{\circ} \mathrm{C}(24 \mathrm{~h})+650^{\circ} \mathrm{C}(24 \mathrm{~h})$.

In the powder diffraction pattern of this sample, recorded after the last heating stage, no lines were registered characteristic for any known phases belonging to the ternary system $\mathrm{PbO}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{Bi}_{2} \mathrm{O}_{3}$. Figure 1 presents the powder diffraction pattern of the investigated sample and of the initial mixture. The results of the XRD examinations allow us to conclude that a compound with the formula $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ was obtained as a result of the reaction between $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and BiVO_{4} at the molar ratio $1: 1$ according to the reaction:

Fig. 1 Powder diffraction patterns. (a) $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}+\mathrm{BiVO}_{4}$ mixture and (b) $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11} . \diamond, \mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (PDF: 73-0150); \leqslant, BiVO_{4} (PDF: 14-688)

Fig. 2 Differential thermal analysis curve of $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$
$\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7(\mathrm{~s})}+\mathrm{BiVO}_{4(\mathrm{~s})}=\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11(\mathrm{~s})}$

This compound was also obtained by heating a mixture of the oxides: $\mathrm{PbO}, \mathrm{Bi}_{2} \mathrm{O}_{3}$, and $\mathrm{V}_{2} \mathrm{O}_{5}$ at the molar ratio 4:1:3 in the cycles: $500{ }^{\circ} \mathrm{C}(24 \mathrm{~h})+600^{\circ} \mathrm{C}(24 \mathrm{~h})$. After the first cycle of heating, the diffractogram of this mixture revealed a set of diffraction lines characteristic of the reagents and a set of lines identical with those recorded in the diffractogram of $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ obtained from BiVO_{4} and $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (reaction shown in Eq 1). It was concluded that $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ can be also obtained as a result of a reaction:
$4 \mathrm{PbO}_{(\mathrm{s})}+\mathrm{Bi}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{~V}_{2} \mathrm{O}_{5(\mathrm{~s})}=2 \mathrm{~Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11(\mathrm{~s})}$
$\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ is yellow and melts congruently at $725^{\circ} \mathrm{C}$. The DTA curve of $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ is presented in Fig. 2.

The powder diffraction pattern of $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ was indexed, and the results are presented in Table 1. The triclinic unit-cell parameters of $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ are: $a=$ $0.710076 \mathrm{~nm}, \quad b=1.41975 \mathrm{~nm}, \quad c=1.42972 \mathrm{~nm}, \quad \alpha=$ $134.552^{\circ}, \beta=97.2875^{\circ}, \gamma=89.6083^{\circ}$, and $Z=4$. The calculated x-ray density amounts to $d_{\mathrm{rtg}}=6.25 \mathrm{~g} / \mathrm{cm}^{3}$, and the pycnometric density $d=6.27 \pm 0.05 \mathrm{~g} / \mathrm{cm}^{3}$.

Further investigation was aimed to check whether only one compound can be obtained in the reaction between BiVO_{4} and $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. For that purpose, 15 extra samples were prepared. Table 2 presents the initial composition of the samples and the phases detected after the last stage of heating. Table 2 shows that only one compound is formed, and that was in accord with the reaction shown in (Eq 1).

Sample 12 in Table 2 has the composition of the compound $\mathrm{Pb}_{6} \mathrm{Bi}_{2} \mathrm{~V}_{8} \mathrm{O}_{29}$. In the diffraction pattern of that

Table 1 Results of indexing the powder diffraction pattern of $\mathbf{P b}_{\mathbf{2}} \mathbf{B i V}_{\mathbf{3}} \mathbf{O}_{\mathbf{1 1}}$

No.	$\boldsymbol{d}_{\text {exp }}, \mathbf{n m}$	$\boldsymbol{d}_{\text {cal }}, \mathbf{n m}$	$\boldsymbol{h} \boldsymbol{k l}$	$\boldsymbol{I} / \boldsymbol{I}_{\mathbf{0}}, \boldsymbol{\%}$
1	1.0048	1.0038	001	1.3
2	0.7003	0.6996	100	1.7
3	0.6268	0.6265	$10 \overline{1}$	4.3
4	0.6051	0.6082	$1 \overline{1} 0$	1.7
5	0.5448	0.5452	110	1.5
6	0.5347	0.5327	101	2.8
7	0.5028	0.5024	020	2.6
8	0.4730	0.4725	$03 \overline{2}$	7.3
9	0.4681	0.4658	$1 \overline{1} \overline{1}$	11.5
10	0.4627	0.4619	$1 \overline{2} 2$	6.3
11	0.4455	0.4455	$10 \overline{2}$	3.5
12	0.4385	0.4369	$03 \overline{3}$	3.4
13	0.4311	0.4326	$1 \overline{2} 0$	1.2
14	0.3999	0.4001	111	3.3
15	0.3875	0.3873	120	3.0
16	0.3826	0.3832	$13 \overline{3}$	1.4
17	0.3685	0.3692	$1 \overline{2} 3$	2.8
18	0.3537	0.3539	$03 \overline{4}$	8.3
19	0.3500	0.3498	200	10.0
20	0.3480	0.3481	$13 \overline{1}$	9.2
21	0.3405	0.3400	$1 \overline{2} \overline{1}$	14.1
22	0.3353	0.3346	003	100.0
23	0.3251	0.3242	$10 \overline{3}$	5.1
24	0.3180	0.3175	$2 \overline{1} \overline{1}$	6.3
25	0.3157	0.3165	$2 \overline{2} 1$	16.1
26	0.3132	0.3132	$20 \overline{2}$	9.8
27	0.3100	0.3115	$1 \overline{4} 2$	4.5

sample, we observed only lines characteristic for $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$.

Figure 3 shows a phase diagram of the system $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7^{-}}$ BiVO_{4}. The diagram implies that $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}-\mathrm{BiVO}_{4}$ is a real quasi-binary system with one compound melting congruently. A eutectic composition of $25 \mathrm{~mol} \% \mathrm{BiVO}_{4}$ and $75 \mathrm{~mol} \% \mathrm{~Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ was found to melt at $700{ }^{\circ} \mathrm{C}$. Another eutectic composition near $56 \mathrm{~mol} \% \mathrm{BiVO}_{4}$ and $44 \mathrm{~mol} \%$ $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ melts at $710{ }^{\circ} \mathrm{C}$.

X-ray diffraction analyses of the samples containing initial mixtures of less than $50 \mathrm{~mol} \% \mathrm{~Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ after the last heating step shows that the phases in equilibrium are $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ and BiVO_{4}. The analysis of samples in the concentration range above $50 \mathrm{~mol} \% \mathrm{~Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$, indicated equilibrium phases $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$.

4. Summary

- It is demonstrated that $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and BiVO_{4} react in solid state, forming a new compound of $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$.
- $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ melts congruently at the temperature $725 \pm$ $5^{\circ} \mathrm{C}$.
- $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ crystallizes in the triclinic system; its unitcell parameters are: $a=0.710076 \mathrm{~nm}, b=1.41975 \mathrm{~nm}$,

Table 2 Composition of samples prepared for research and phases detected in equilibrium samples

No.	Composition of initial mixtures in terms of the system components, mol\%		Heating conditions	Composition of equilibrium samples
	$\mathbf{P b}_{2} \mathbf{V}_{2} \mathbf{O}_{7}$	BiVO_{4}		
1	5.00	95.00	$600{ }^{\circ} \mathrm{C}(24 \mathrm{~h})+650{ }^{\circ} \mathrm{C}(24 \mathrm{~h})$	$\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}+\mathrm{BiVO}_{4}$
2	10.00	90.00		
3	12.00	88.00		
4	16.00	84.00		
5	20.00	80.00		
6	25.00	75.00		
7	30.00	70.00		
8	35.00	65.00		
9	40.00	60.00		
10	46.00	54.00		
11	50.00	50.00		$\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$
12	60.00	40.00		$\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}+\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$
13	66.67	33.33		
14	75.00	25.00		
15	80.00	20.00		
16	90.00	10.00		

Fig. 3 Diagram of phase equilibria of the system $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}-\mathrm{BiVO}_{4}$
$c=1.42972 \mathrm{~nm}, \alpha=134.552^{\circ}, \beta=97.2875^{\circ}, \gamma=89.6083^{\circ}$, $Z=4$. $\mathrm{Pb}_{2} \mathrm{BiV}_{3} \mathrm{O}_{11}$ is not isostructural with the compounds of the general formula $\mathrm{M}_{2}^{\mathrm{II}} \mathrm{BiV}_{3} \mathrm{O}_{11}$.

- A diagram of phase relations has been constructed for the system $\mathrm{Pb}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}-\mathrm{BiVO}_{4}$ over the entire component concentration range at temperatures up to $1000{ }^{\circ} \mathrm{C}$.

References

1. M. Kurzawa, I. Rychlowska-Himmel, A. Blonska-Tabero, M. Bosacka, and G. Dabrowska, Synthesis and Characterization of New Compounds $\mathrm{Ni}_{2} \mathrm{CrV}_{3} \mathrm{O}_{11}$ and $\mathrm{Zn}_{2} \mathrm{CrV}_{3} \mathrm{O}_{11}$, Solid State Phenom., 2003, 90-91, p 347-352
2. M. Kurzawa, I. Rychlowska-Himmel, M. Bosacka, and G. Dabrowska, A New Compound $\mathrm{Mg}_{2} \mathrm{CrV}_{3} \mathrm{O}_{11}$ and Phase Relation in the $\mathrm{MgV}_{2} \mathrm{O}_{6}-\mathrm{MgCr}_{2} \mathrm{O}_{4}$ System in the Solid State, Solid State Phenom., 2003, 90-91, p 353-358
3. M. Bosacka and M. Kurzawa, Solid State Chemistry, (Prague Czech Republic), 2004, Book of Abstracts, p 183
4. X. Wang, D.A.V. Griend, C.L. Stern, and K.R. Poeppelmeier, Structure and Cation Distribution of New Ternary Vanadates $\mathrm{FeMg}_{2} \mathrm{~V}_{3} \mathrm{O}_{11}$ and $\mathrm{FeZn}_{2} \mathrm{~V}_{3} \mathrm{O}_{11}$, J. Alloys Compd., 2000, 298, p 19-124
5. M.A Lafontaine, J.M. Greneche, Y. Laligant, and G. Ferey, $\beta-\mathrm{Cu}_{3} \mathrm{Fe}_{4}\left(\mathrm{VO}_{4}\right)_{6}$: Structural Study and Relationships; Physical Properties, J. Solid State Chem., 1994, 108, p 1-10
6. M. Kurzawa and A. Blonska-Tabero, The Synthesis and Selected Properties of New Compounds: $\mathrm{Mg}_{3} \mathrm{Fe}_{4}\left(\mathrm{VO}_{4}\right)_{6}$ and $\mathrm{Zn}_{3} \mathrm{Fe}_{4}\left(\mathrm{VO}_{4}\right)_{6}$, Mater. Res. Bull., 2002, 37, p 849-858
7. J.D. Pless, B.B. Bardin, H.-S. Kim, D. Ko, M.T. Smith, R.R. Hammond, P.C. Stair, and K.R. Poeppelmeier, Catalytic Oxidative Dehydrogenation of Propane over $\mathrm{Mg}-\mathrm{V} / \mathrm{Mg}$ Oxides, J. Catal., 2004, 223, p 419-431
8. J. Huang and A. Sleight, A New Bismuth Strontium Vanadate, $\mathrm{BiSr}_{2} \mathrm{~V}_{3} \mathrm{O}_{11}$, with both Orthovanadate and Pyrovanadate Groups, J. Solid State Chem., 1992, 97, p 228-232
9. J. Huang, Q. Gu, and A. Sleight, Synthesis and Crystal Structure of a New Mixed Orthovanadate-Pyrovanadate Series:
$\mathrm{MBa}_{2} \mathrm{~V}_{2} \mathrm{O}_{11}$ or $\mathrm{MBa}_{2} \mathrm{~V}_{2} \mathrm{PO}_{11}$ with $\mathrm{M}=\mathrm{Bi}$, In, or a Rare Earth, J. Solid State Chem., 1994, 110, p 226-233
10. J.C. Boivin and G. Mairesse, Recent Material Developments in Fast Oxide Ion Conductors, Chem. Mater., 1998, 10, p 28702888
11. A.A. Fotiev, V.K. Trunov, and V.D. Zhuravlev, Vanadaty Dvukhvalentnykh Metallov (Vanadates of Divalent Metals), Nauka, Moscow, 1985 (in Russian)
12. R.S. Roth and J.L. Waring, Synthesis and Stability of Bismutotantalite, Stibiotantalite and Chemically Similar ABO_{4} Compounds, Am. Mineral, 1963, 48, p 1348-1356
13. S. Uma, R. Bliesner, and A.W. Sleight, Oxygen ion conductivity in new oxygen deficient phases with scheelite related structures, Solid State Sci., 2002, 4, p 329-333
14. A.K. Bhattacharya, K.K. Mallick, and A. Hartridge, Phase transition in BiVO_{4}, Mater. Lett., 1997, 30, p 7-13
15. J.D. Bierlein and A.W. Sleight, Ferroelasticity in BiVO_{4}, Solid State Commun., 1975, 16, p 69-70
16. N.P. Smolyaninov and I.N. Belyaev, Phase equilibria in the $\mathrm{Bi}_{2} \mathrm{O}_{3}-$ $\mathrm{PbO}-\mathrm{V}_{2} \mathrm{O}_{5}$ System, Russ. J. Inorg. Chem., 1963, 8, p 632-634
17. A.A. Fotiev, B.V. Slobodin, and M.Ya. Khodos, Vanadaty, sostav, sintez, struktura, svoistva (Vanadates. Composition, Synthesis, Structure, and Properties), Nauka, Moscow, 1988 (in Russian)
18. Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, File No.: 14-688, 14-699, 38-1477, 730150, 89-0612
19. Z. Kluz and I. Waclawska, Precise Determination of Powder Density, Rocz. Chem., 1975, 49, p 839-849
20. D. Taupin, Une Methode Generale pour I'Indexation des Diagrammes de Poudres, J. Appl. Crystallogr., 1973, 6, p 380-385

[^0]: M. Kurzawa, M. Bosacka, and I. Szkoda, Department of Inorganic and Analytical Chemistry, Szczecin University of Technology, Al. Piastów 42, 71-065 Szczecin, Poland; Contact e-mail: bossm@ps.pl

