# Synthesis and Characterization of New Bismuth Lead Vanadate Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub>

M. Kurzawa, M. Bosacka and I. Szkoda

(Submitted March 15, 2006; in revised form January 3, 2007)

It has been shown that BiVO<sub>4</sub> and Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub> react with each other, forming a new compound of the formula Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub> at molar ratio equal to 1:1. This compound has also been obtained from PbO, Bi<sub>2</sub>O<sub>3</sub>, and V<sub>2</sub>O<sub>5</sub>, mixed at a molar ratio of 4:1:3. It melts congruently at a temperature of  $725\pm5$  °C and crystallizes in the triclinic system with unit-cell parameters: a = 0.710076 nm, b = 1.41975 nm, c = 1.42972 nm,  $\alpha = 134.552^{\circ}$ ,  $\beta = 97.2875^{\circ}$ ,  $\gamma = 89.6083^{\circ}$ , and Z = 4.

| Keywords | bismuth | orthovanadate, | lead | divanadate, | phase | equi- |
|----------|---------|----------------|------|-------------|-------|-------|
|          | libria  |                |      |             |       |       |

## 1. Introduction

Literature information implies that there exists a series of new compounds of the general formula  $M_2^{II}M^{III}V_3O_{11}$  in the ternary system of metal oxides  $M^{II}O-V_2O_5-M_2^{III}O_3$ , where  $M^{II} = Co$ , Mg, Ni, and Zn, and  $M^{III} = Fe$ , Cr, In.<sup>[1-4]</sup> Also, compounds of  $M_3^{II}Fe_4V_6O_{24}$  type are formed in the  $M^{II}O-V_2O_5$ -Fe<sub>2</sub>O<sub>3</sub> systems.<sup>[5,6]</sup> In the structure of these compounds, VO<sub>4</sub> tetrahedra as well as VO<sub>5</sub> bipyramids can be distinguished.<sup>[5,6]</sup> The compounds have good catalytic properties.<sup>[7]</sup>

Literature search showed that in the systems Bi<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-MO, where M = Sr, Ba compounds are formed with general formula Bi M<sub>2</sub><sup>II</sup>V<sub>3</sub>O<sub>11</sub>.<sup>[8,9]</sup> Those compounds for Sr and Ba are not isostructural. BiSr<sub>2</sub>V<sub>3</sub>O<sub>11</sub> crystallizes in the triclinic system with the space group *P* 1, its cell parameters are: a = 7.0332(6) Å, b = 10.213(2) Å, c = 6.982(2) Å,  $\alpha = 96.01(2)^\circ$ ,  $\beta = 92.87(2)^\circ$ ,  $\gamma = 99.16(2)^\circ$ , V = 491.3(1) Å<sup>3</sup>, and Z = 2.<sup>[8]</sup> Both the pyrovanadate groups (V<sub>2</sub>O<sub>7</sub>)<sup>4-</sup> and the orthovanadates groups (VO<sub>4</sub>)<sup>3-</sup> are isolated in the structure of that compound. As a result of the substitution of Sr for Ba, a compound crystallizing in the monoclinic system is formed, despite the fact that it contains the same coordinated polyhedra as BiSr<sub>2</sub>V<sub>3</sub>O<sub>11</sub>. The cell parameters of BiBa<sub>2</sub>V<sub>3</sub>O<sub>11</sub> are: a = 12.332(4) Å, b = 7.750(4) Å, c = 11.279(4) Å,  $\beta = 103.22(3)^\circ$ , and V = 1049(1) Å<sup>3</sup>, with the space group  $P2_1/c$ , Z = 4.<sup>[9]</sup>

The aim of this work was determining the phase relations in the system  $Pb_2V_2O_7$ -BiVO<sub>4</sub> and checking whether a compound belonging to the family Bi  $M_2^{III}V_3O_{11}$  is formed in the investigated system. Research on the PbO-Bi<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub> system is motivated by the fact that many of these tetrahedral anion compounds display interesting properties due to the presence of Bi and Pb lone-pair electrons.<sup>[10]</sup> It is particularly interesting that these compounds exhibit transport behavior typical of anions.<sup>[10]</sup>

The components of the system  $Pb_2V_2O_7$ -BiVO<sub>4</sub> are well known.  $Pb_2V_2O_7$  is one of the five compounds belonging to the system PbO-V<sub>2</sub>O<sub>5</sub>. This compound does not have polymorphic forms.  $Pb_2V_2O_7$  melts congruently at 740 °C.<sup>[11]</sup> This lead(II) pyrovanadate(V) crystallizes in the monoclinic system with the space group  $P2_1/c$ , Z = 4, and its unit-cell parameters are: a = 7.1027 Å, b = 7.1607 Å, c = 13.368 Å, and  $\beta = 105.935^{\circ}$ .<sup>[11]</sup>

Bismuth(III) orthovanadate(V) occurs in nature as a mineral named pucherite, crystallizing in the orthorhombic system.<sup>[12]</sup> This polymorph has never been obtained in laboratory conditions. As a result of the synthesis of this compound, at low temperature a tetragonal polymorph of BiVO<sub>4</sub> is obtained, possessing a zircon-type structure. A monoclinic phase forms at high temperatures. At a temperature of 255 °C, monoclinic BiVO<sub>4</sub> undergoes a reversible second-order phase transition to the tetragonal scheelite-type structure. Above 255 °C, BiVO<sub>4</sub> has an ideal scheelite structure. At temperatures higher than 400 °C, the zircon form of BiVO<sub>4</sub> transforms irreversibly into the monoclinic form.<sup>[12-14]</sup> Bismuth(III) orthovanadate(V) melts congruently at 940 °C.<sup>[15]</sup> The high-temperature modification of BiVO<sub>4</sub> (scheelite) crystallizes in the tetragonal system with the space group  $I4_1/a$ ; its cell parameters are: a = 7.307(0) A and c = 6.466(3) Å.<sup>[14]</sup>

The phase relations in the Bi<sub>2</sub>O<sub>3</sub>-V<sub>2</sub>O<sub>5</sub>-PbO system were studied.<sup>[16,17]</sup> Only one work<sup>[17]</sup> on the reactivity between lead(II) pyrovanadate(V) and bismuth(III) orthovanadate(V) has been found in literature. In that paper, it was shown that a compound with the formula Pb<sub>6</sub>Bi<sub>2</sub>V<sub>8</sub>O<sub>29</sub> was obtained as a result of a reaction between Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub> and BiVO<sub>4</sub> at the molar ratio 3:2. That compound melts at 710 °C;<sup>[17]</sup> whether the melting was congruent or peritectic was not specified.

## 2. Experimental Procedure

The reagents used in this research were: PbO (Merck, Darmstadt, Germany), Bi<sub>2</sub>O<sub>3</sub> (POCh, Gliwice, Poland), and

M. Kurzawa, M. Bosacka, and I. Szkoda, Department of Inorganic and Analytical Chemistry, Szczecin University of Technology, Al. Piastów 42, 71-065 Szczecin, Poland; Contact e-mail: bossm@ps.pl

V<sub>2</sub>O<sub>5</sub> (Riedel-de Haën, Steinheim, Germany). The hightemperature modification of BiVO<sub>4</sub> was obtained as a result of heating an equimolar mixture of Bi<sub>2</sub>O<sub>3</sub> and V<sub>2</sub>O<sub>5</sub> in the cycles: 600 °C (24 h) + 650 °C (24 h). Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub> was obtained as a result of heating the mixture of PbO and V<sub>2</sub>O<sub>5</sub> at a molar ratio 2:1 in three cycles: 500 °C (2 h) + 600 °C (24 h) + 650 °C (24 h).

For the research, 16 samples were prepared from the investigated system  $Pb_2V_2O_7$ -BiVO<sub>4</sub>, belonging to the ternary system PbO-V<sub>2</sub>O<sub>5</sub>-Bi<sub>2</sub>O<sub>3</sub>. The reagents were weighed in appropriate portions, homogenized by grinding, and next pressed into pellets and heated in an air atmosphere in a furnace. All samples were heated in two cycles: 600 °C (24 h) + 650 °C (24 h). After each heating cycle, the pellets were ground and subjected to x-ray diffraction (XRD) and differential thermal analysis (DTA) investigations.

The equilibrium phases were determined by XRD analysis of samples heated additionally for 2 to 4 h in selected temperatures and then rapidly cooled to ambient temperature.

The XRD examinations were performed using a diffractometer DRON-3 (Bourevestnik, St. Petersburg, Russia) Co K $\alpha$  radiation and an Fe filter. The identification of individual phases was based on the accordance of obtained diffraction patterns with the data contained in the PDF cards.<sup>[18]</sup>

The DTA investigations were conducted by using a derivatograph of F.Paulik-J.Paulik-L.Erdey type (MOM, Budapest, Hungary). The measurements were performed in an air atmosphere, in quartz crucibles at a heating rate of

10 °C/min in the temperature range 20 to 1000 °C. The weight of the investigated samples always amounted to 500 mg.

The density of the compound was determined by the method described in an earlier work.<sup>[19]</sup> The unit-cell parameters of the resultant compound were calculated by using the program POWDER.<sup>[20]</sup> Exact positions of the diffraction lines were determined by the internal standard method. The internal standard used was KCl (space group  $Fm\overline{3}m$ , a = 0.6293 nm).

## 3. Results and Discussion

The first stage of this work was an attempt to synthesize the compound  $Pb_2BiV_3O_{11}$ . For this purpose, a sample of the composition 50 mol%  $Pb_2V_2O_7$  and 50 mol%  $BiVO_4$  was weighed and prepared by conventional methods in two cycles: 600 °C (24 h) + 650 °C (24 h).

In the powder diffraction pattern of this sample, recorded after the last heating stage, no lines were registered characteristic for any known phases belonging to the ternary system PbO-V<sub>2</sub>O<sub>5</sub>-Bi<sub>2</sub>O<sub>3</sub>. Figure 1 presents the powder diffraction pattern of the investigated sample and of the initial mixture. The results of the XRD examinations allow us to conclude that a compound with the formula  $Pb_2BiV_3O_{11}$  was obtained as a result of the reaction between  $Pb_2V_2O_7$  and  $BiVO_4$  at the molar ratio 1:1 according to the reaction:



**Fig. 1** Powder diffraction patterns. (a)  $Pb_2V_2O_7 + BiVO_4$  mixture and (b)  $Pb_2BiV_3O_{11}$ .  $\diamond$ ,  $Pb_2V_2O_7$  (PDF: 73-0150);  $\blacklozenge$ ,  $BiVO_4$  (PDF: 14-688)



**Fig. 2** Differential thermal analysis curve of  $Pb_2BiV_3O_{11}$ 

$$Pb_2V_2O_{7(s)} + BiVO_{4(s)} = Pb_2BiV_3O_{11(s)} \eqno(Eq\ 1)$$

This compound was also obtained by heating a mixture of the oxides: PbO,  $Bi_2O_3$ , and  $V_2O_5$  at the molar ratio 4:1:3 in the cycles: 500 °C (24 h) + 600 °C (24 h). After the first cycle of heating, the diffractogram of this mixture revealed a set of diffraction lines characteristic of the reagents and a set of lines identical with those recorded in the diffractogram of Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub> obtained from BiVO<sub>4</sub> and Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub> (reaction shown in Eq 1). It was concluded that Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub> can be also obtained as a result of a reaction:

$$4PbO_{(s)} + Bi_2O_{3(s)} + 3V_2O_{5(s)} = 2Pb_2BiV_3O_{11(s)}$$
(Eq 2)

 $Pb_2BiV_3O_{11}$  is yellow and melts congruently at 725 °C. The DTA curve of  $Pb_2BiV_3O_{11}$  is presented in Fig. 2.

The powder diffraction pattern of Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub> was indexed, and the results are presented in Table 1. The triclinic unit-cell parameters of Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub> are: a =0.710076 nm, b = 1.41975 nm, c = 1.42972 nm,  $\alpha =$ 134.552°,  $\beta = 97.2875°$ ,  $\gamma = 89.6083°$ , and Z = 4. The calculated x-ray density amounts to  $d_{rtg} = 6.25$  g/cm<sup>3</sup>, and the pycnometric density  $d = 6.27 \pm 0.05$  g/cm<sup>3</sup>.

Further investigation was aimed to check whether only one compound can be obtained in the reaction between  $BiVO_4$  and  $Pb_2V_2O_7$ . For that purpose, 15 extra samples were prepared. Table 2 presents the initial composition of the samples and the phases detected after the last stage of heating. Table 2 shows that only one compound is formed, and that was in accord with the reaction shown in (Eq 1).

Sample 12 in Table 2 has the composition of the compound  $Pb_6Bi_2V_8O_{29}$ . In the diffraction pattern of that

Table 1Results of indexing the powder diffractionpattern of Pb2BiV3O11

| No. | d <sub>exp</sub> , nm | d <sub>cal</sub> , nm | hkl           | <i>I</i> / <i>I</i> <sub>0</sub> , % |
|-----|-----------------------|-----------------------|---------------|--------------------------------------|
| 1   | 1.0048                | 1.0038                | 001           | 1.3                                  |
| 2   | 0.7003                | 0.6996                | 100           | 1.7                                  |
| 3   | 0.6268                | 0.6265                | 10 1          | 4.3                                  |
| 4   | 0.6051                | 0.6082                | 1 10          | 1.7                                  |
| 5   | 0.5448                | 0.5452                | 110           | 1.5                                  |
| 6   | 0.5347                | 0.5327                | 101           | 2.8                                  |
| 7   | 0.5028                | 0.5024                | 020           | 2.6                                  |
| 8   | 0.4730                | 0.4725                | 03 2          | 7.3                                  |
| 9   | 0.4681                | 0.4658                | 1 11          | 11.5                                 |
| 10  | 0.4627                | 0.4619                | 1 22          | 6.3                                  |
| 11  | 0.4455                | 0.4455                | 10 2          | 3.5                                  |
| 12  | 0.4385                | 0.4369                | 03 3          | 3.4                                  |
| 13  | 0.4311                | 0.4326                | 1 20          | 1.2                                  |
| 14  | 0.3999                | 0.4001                | 111           | 3.3                                  |
| 15  | 0.3875                | 0.3873                | 120           | 3.0                                  |
| 16  | 0.3826                | 0.3832                | 13 3          | 1.4                                  |
| 17  | 0.3685                | 0.3692                | 1 23          | 2.8                                  |
| 18  | 0.3537                | 0.3539                | 03 4          | 8.3                                  |
| 19  | 0.3500                | 0.3498                | 200           | 10.0                                 |
| 20  | 0.3480                | 0.3481                | 13 1          | 9.2                                  |
| 21  | 0.3405                | 0.3400                | 1 21          | 14.1                                 |
| 22  | 0.3353                | 0.3346                | 003           | 100.0                                |
| 23  | 0.3251                | 0.3242                | 10 3          | 5.1                                  |
| 24  | 0.3180                | 0.3175                | 2 11          | 6.3                                  |
| 25  | 0.3157                | 0.3165                | 2 21          | 16.1                                 |
| 26  | 0.3132                | 0.3132                | $20\ \bar{2}$ | 9.8                                  |
| 27  | 0.3100                | 0.3115                | 1 42          | 4.5                                  |
|     |                       |                       |               |                                      |

sample, we observed only lines characteristic for  $Pb_2V_2O_7$  and  $Pb_2BiV_3O_{11}$ .

Figure 3 shows a phase diagram of the system  $Pb_2V_2O_7$ -BiVO<sub>4</sub>. The diagram implies that  $Pb_2V_2O_7$ -BiVO<sub>4</sub> is a real quasi-binary system with one compound melting congruently. A eutectic composition of 25 mol% BiVO<sub>4</sub> and 75 mol%  $Pb_2V_2O_7$  was found to melt at 700 °C. Another eutectic composition near 56 mol% BiVO<sub>4</sub> and 44 mol%  $Pb_2V_2O_7$  melts at 710 °C.

X-ray diffraction analyses of the samples containing initial mixtures of less than 50 mol%  $Pb_2V_2O_7$  after the last heating step shows that the phases in equilibrium are  $Pb_2BiV_3O_{11}$  and  $BiVO_4$ . The analysis of samples in the concentration range above 50 mol%  $Pb_2V_2O_7$ , indicated equilibrium phases  $Pb_2V_2O_7$  and  $Pb_2BiV_3O_{11}$ .

#### 4. Summary

- It is demonstrated that Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub> and BiVO<sub>4</sub> react in solid state, forming a new compound of Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub>.
- $Pb_2BiV_3O_{11}$  melts congruently at the temperature  $725 \pm 5$  °C.
- $Pb_2BiV_3O_{11}$  crystallizes in the triclinic system; its unitcell parameters are: a = 0.710076 nm, b = 1.41975 nm,

|     | Composition of initial mixtures<br>in terms of the system<br>components, mol% |                   |                               |                                                  |  |
|-----|-------------------------------------------------------------------------------|-------------------|-------------------------------|--------------------------------------------------|--|
| No. | Pb <sub>2</sub> V <sub>2</sub> O <sub>7</sub>                                 | BiVO <sub>4</sub> | Heating conditions            | Composition of equilibrium samples               |  |
| 1   | 5.00                                                                          | 95.00             | 600 °C (24 h) + 650 °C (24 h) | $Pb_2BiV_3O_{11} + BiVO_4$                       |  |
| 2   | 10.00                                                                         | 90.00             |                               |                                                  |  |
| 3   | 12.00                                                                         | 88.00             |                               |                                                  |  |
| 4   | 16.00                                                                         | 84.00             |                               |                                                  |  |
| 5   | 20.00                                                                         | 80.00             |                               |                                                  |  |
| 6   | 25.00                                                                         | 75.00             |                               |                                                  |  |
| 7   | 30.00                                                                         | 70.00             |                               |                                                  |  |
| 8   | 35.00                                                                         | 65.00             |                               |                                                  |  |
| 9   | 40.00                                                                         | 60.00             |                               |                                                  |  |
| 10  | 46.00                                                                         | 54.00             |                               |                                                  |  |
| 11  | 50.00                                                                         | 50.00             |                               | Pb <sub>2</sub> BiV <sub>3</sub> O <sub>11</sub> |  |
| 12  | 60.00                                                                         | 40.00             |                               | $Pb_2V_2O_7 + Pb_2BiV_3O_{11}$                   |  |
| 13  | 66.67                                                                         | 33.33             |                               |                                                  |  |
| 14  | 75.00                                                                         | 25.00             |                               |                                                  |  |
| 15  | 80.00                                                                         | 20.00             |                               |                                                  |  |
| 16  | 90.00                                                                         | 10.00             |                               |                                                  |  |

Table 2 Composition of samples prepared for research and phases detected in equilibrium samples



Fig. 3 Diagram of phase equilibria of the system Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub>-BiVO<sub>4</sub>

c = 1.42972 nm,  $\alpha = 134.552^{\circ}$ ,  $\beta = 97.2875^{\circ}$ ,  $\gamma = 89.6083^{\circ}$ , Z = 4. Pb<sub>2</sub>BiV<sub>3</sub>O<sub>11</sub> is not isostructural with the compounds of the general formula M<sup>II</sup><sub>2</sub>BiV<sub>3</sub>O<sub>11</sub>.

 A diagram of phase relations has been constructed for the system Pb<sub>2</sub>V<sub>2</sub>O<sub>7</sub>-BiVO<sub>4</sub> over the entire component concentration range at temperatures up to 1000 °C.

#### References

- M. Kurzawa, I. Rychlowska-Himmel, A. Blonska-Tabero, M. Bosacka, and G. Dabrowska, Synthesis and Characterization of New Compounds Ni<sub>2</sub>CrV<sub>3</sub>O<sub>11</sub> and Zn<sub>2</sub>CrV<sub>3</sub>O<sub>11</sub>, *Solid State Phenom.*, 2003, **90-91**, p 347-352
- M. Kurzawa, I. Rychlowska-Himmel, M. Bosacka, and G. Dabrowska, A New Compound Mg<sub>2</sub>CrV<sub>3</sub>O<sub>11</sub> and Phase Relation in the MgV<sub>2</sub>O<sub>6</sub>-MgCr<sub>2</sub>O<sub>4</sub> System in the Solid State, *Solid State Phenom.*, 2003, **90-91**, p 353-358
- M. Bosacka and M. Kurzawa, *Solid State Chemistry*, (Prague Czech Republic), 2004, Book of Abstracts, p 183
- X. Wang, D.A.V. Griend, C.L. Stern, and K.R. Poeppelmeier, Structure and Cation Distribution of New Ternary Vanadates FeMg<sub>2</sub>V<sub>3</sub>O<sub>11</sub> and FeZn<sub>2</sub>V<sub>3</sub>O<sub>11</sub>, *J. Alloys Compd.*, 2000, **298**, p 19-124
- M.A Lafontaine, J.M. Greneche, Y. Laligant, and G. Ferey, β-Cu<sub>3</sub>Fe<sub>4</sub>(VO<sub>4</sub>)<sub>6</sub>: Structural Study and Relationships; Physical Properties, *J. Solid State Chem.*, 1994, **108**, p 1-10
- M. Kurzawa and A. Blonska-Tabero, The Synthesis and Selected Properties of New Compounds: Mg<sub>3</sub>Fe<sub>4</sub>(VO<sub>4</sub>)<sub>6</sub> and Zn<sub>3</sub>Fe<sub>4</sub>(VO<sub>4</sub>)<sub>6</sub>, *Mater. Res. Bull.*, 2002, **37**, p 849-858
- J.D. Pless, B.B. Bardin, H.-S. Kim, D. Ko, M.T. Smith, R.R. Hammond, P.C. Stair, and K.R. Poeppelmeier, Catalytic Oxidative Dehydrogenation of Propane over Mg-V/Mg Oxides, J. Catal., 2004, 223, p 419-431
- J. Huang and A. Sleight, A New Bismuth Strontium Vanadate, BiSr<sub>2</sub>V<sub>3</sub>O<sub>11</sub>, with both Orthovanadate and Pyrovanadate Groups, *J. Solid State Chem.*, 1992, **97**, p 228-232
- 9. J. Huang, Q. Gu, and A. Sleight, Synthesis and Crystal Structure of a New Mixed Orthovanadate-Pyrovanadate Series:

 $MBa_2V_2O_{11}$  or  $MBa_2V_2PO_{11}$  with M = Bi, In, or a Rare Earth, J. Solid State Chem., 1994, **110**, p 226-233

- J.C. Boivin and G. Mairesse, Recent Material Developments in Fast Oxide Ion Conductors, *Chem. Mater.*, 1998, **10**, p 2870-2888
- 11. A.A. Fotiev, V.K. Trunov, and V.D. Zhuravlev, Vanadaty Dvukhvalentnykh Metallov (Vanadates of Divalent Metals), Nauka, Moscow, 1985 (in Russian)
- R.S. Roth and J.L. Waring, Synthesis and Stability of Bismutotantalite, Stibiotantalite and Chemically Similar ABO<sub>4</sub> Compounds, *Am. Mineral*, 1963, 48, p 1348-1356
- S. Uma, R. Bliesner, and A.W. Sleight, Oxygen ion conductivity in new oxygen deficient phases with scheelite related structures, *Solid State Sci.*, 2002, 4, p 329-333
- 14. A.K. Bhattacharya, K.K. Mallick, and A. Hartridge, Phase transition in BiVO<sub>4</sub>, *Mater. Lett.*, 1997, **30**, p 7-13
- J.D. Bierlein and A.W. Sleight, Ferroelasticity in BiVO<sub>4</sub>, *Solid* State Commun., 1975, 16, p 69-70
- N.P. Smolyaninov and I.N. Belyaev, Phase equilibria in the Bi<sub>2</sub>O<sub>3</sub>-PbO-V<sub>2</sub>O<sub>5</sub> System, *Russ. J. Inorg. Chem.*, 1963, 8, p 632-634
- 17. A.A. Fotiev, B.V. Slobodin, and M.Ya. Khodos, Vanadaty, sostav, sintez, struktura, svoistva (Vanadates. Composition, Synthesis, Structure, and Properties), Nauka, Moscow, 1988 (in Russian)
- Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, File No.: 14-688, 14-699, 38-1477, 73-0150, 89-0612
- Z. Kluz and I. Waclawska, Precise Determination of Powder Density, *Rocz. Chem.*, 1975, 49, p 839-849
- D. Taupin, Une Methode Generale pour l'Indexation des Diagrammes de Poudres, J. Appl. Crystallogr., 1973, 6, p 380-385